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Received 7 April 1992 

Abstract. Mixed-valent systems based on Ce, Sm, Eu and Yb exhibit a wide range of 
behaviour with r a p e n  to valence changes under the application of pressure. W e  present 
a semi-phenomenological model for this behaviour based on competition effects between 
the usual elastic energy mst and the magnetic energy gain due lo valence fluctuations. 
For the latter we use a mean-field Andenon lattice description and incorporate Ihe effects 
of pressure by introducing a volume dependence to the Andemn model parameten 6,  

and A. In contrast to existing models such as the Kondo Volume Collapse theory of 
Allen and Martin, which d e s a i b s  magnetic to non-magnetic transitions without suable 
valence change (e.g. y-Ce- o-Ce), the Andenon lattice model developed here daclibes 
systems with both small and large valence changes the transition can be continuous (e.g. 
EuPdzSiz) or discontinuous (EuPdzSiz alloyed with Au). 

1. Introduction and experimental overview 

The valence (f-electron count) and its dependence on pressure, in mixed-valent rare- 
earth systems, are extremely sensitive to details of the system. This fact is well 
illustrated by the difference in the behaviour of the valence of Eu with pressure 
in three compounds, EuPd,Si,, EuNi,P, and EuCu,Si, (Perscheid et nl  1985), all 
of which have the same crystal structure (ThCr,Si,, I4/mmm, 2 = 2). In this 
paper we present a model capable of providing a unified description of isostructural 
valence-change transitions, continuous as well as discontinuous, involving both large 
and small changes in valence, in systems based on Ce, Sm, Eu and Yb. In these 
systems the rare-earth ion fluctuates between two ionic configurations, r" and P-', 
only one of which is magnetic. The magnetic energy gained from these fluctuations is 
a sensitive function of volume, owing to the large difference in the atomic volumes of 
the two valence co~gurations. Application of pressure leads to competition effects 
between the cast in elastic energy and the gain in magnetic energy, giving rise to 
either continuous or discontinuous valence-change transitions. Since there is no 
accompanying change in lattice symmetry, the reason for the transitions is simply a 
bulk-modulus instability. In Sm and Yb based systems, increasing pressure drives the 
transition from a non-magnetic, high-volume state towards a magnetic (degenerate), 
low-volume state (f6 -+ f5 in Sm and f I 4  - f t 3  in Yb; the valence changes from 2f 
to 3+ in both). In the case of Ce and Eu based compounds, the nonmagnetic state 
has a smaller volume and pressure drives the transition from f' -P fo  in Ce (valence 
3f to 4+) and f' - fs in Eu (valence 2+ to 31). 

t Present address: Theoretische Physik, ETH Honggerkrg, Ch-8W3 Zurich, Switzerland. 
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We use the Anderson lattice model, treated as a collection of independent An- 
derson impurities (Anderson 1961), to describe the mixed-valent behaviour in these 
rare-earth systems. In doing so we neglect inter-site and coherence effects due to 
the lattice, assuming these are not pressure-dependent. Furthermore, we treat the 
orbitally degenerate U = 03 version of the Anderson impurity Hamiltonian only 
within a mean-field approximation of the slave-boson functional-integral technique 
(Coleman 1984, Read and Newns 1983a,b). Such a description corresponds to taking 
the N - co limit of a perturbation expansion in which 1/N (N E degeneracy) 
is used as an expansion parameter (Anderson 1981). The large orbital degeneracy 
of the magnetic state not only enhances the magnetic energy gained due to valence 
fluctuations (increased entropy) but also reduces the importance of inter-site contri- 
butions (0( 1 / N ) )  relative to the on-site valence-fluctuation energy (Ramakrishnan 
1981), thus providing further justification for neglecting inter-site effects. In order 
to simulate pressure effects we take the impurity parameters E <  and A, the f-level 
position and the hybridization width respectively, to be volume-dependent. 

A similar approach, based on a volume-dependent magnetic energy, has been 
used earlier by Allen and Martin (1982) and Martin and Allen (1983, 1985) to model 
the discontinuous y-a transition in cerium. The transition is discontinuous and is 
accompanied by a large (15%) change in volume but only a relatively small change in 
valence (3’ to 3.3+ at most). Focusing on the small change in the valence of cerium, 
they described the transition using a Kondo lattice model with a volume-dependent 
Kondo coupling constant J. Our model extends their description to include systems 
that show large or small, discontinuous or continuous changes in valence, e.g. CeAl, 
(Vedel el a1 1986) and CeCu,Si, (Spain el a1 1986), which are among cerium based 
compounds showing continuous transitions. It  is now generally accepted that all 
cerium systems are nearly integral-valent (valence in the range 3+-3.2+) (Wohllebcn 
and Rohler 1984) but their valence changes with pressure can be either continuous or 
discontinuous (Leger er a/ 1985). Based on spectroscopic studies, Croft et a f  (1981) 
have suggested that Ce systems be described in terms of a change in the hybridization 
width A (or equivalently the Kondo coupling J)  with pressure rather than a shift in 
f-level position cr. 

In contrast, the valences of Eu, Sm and Yb in their compounds are in the mixed- 
valent regime. All of them usually show a larger overall change in valence with 
pressure compared to Ce but the details of their response differ considerably from 
each other. The chalcogenides of Sm, SmSe and SmTe (Jayaraman et a/ 1974) show 
continuous valence changes in the mixed-valent regime, while SmS shows the famous 
‘black to gold’, discontinuous, first-order transition at 8 kbar (Chatterjee el a1 1972). 
Yb chalcogenides have P-V curves that are rather anomalous compared to other 
Yb systems, in that they seem to be on the verge of a discontinuous transition. The 
valence changes with pressure in these materials are rapid (though still continuous) 
over the range 1W200 kbar (Jayaraman el ai 1974). The chalcogenides of Eu all 
show gentle, continuous, valence changes, but two other Eu based systems, EuO 
and EuPd,Si,, have very unusual behaviour. EuO is the only Eu based system that 
shows a first-order valence-change transition (Jayaraman 1972). In EuPd,Si, there is 
an anomalously large variation in the isomer shift (valence) with temperature in the 
region of 150 K (Croft er a/ 1982a, Holland-Moritz 1985, Sampathkumaran er a1 1981, 
Sampathkumaran 1981). Under pressure this large overall change in the isomer shift 
reduces considerably (Schmiester er a1 1982), while alloying with Au even drives the 
transition first-order. The compressibility of this material (Batlogg er a1 1982) is also 
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very different from that of Ce (Evdokimova and Genshaft 1965), a fact that can be 
explained quite naturally within our model. We have found that valence changes in 
the mixed-valent regime can be understood by allowing for a pressure-dependent shift 
in the f-level position er. Even in the case of YbCuAl, which is a good Kondo system 
(Hewson et a1 1985), experimental evidence indicates that the dominant pressure 
effect is an increase in ff (Mattens et ai 1980, Mignot and Wittig 1982). 

Another experimental result relevant to our discussion is the fact that the bulk 
moduli B of mixed-valent compounds in a rare-earth series, e.g. EN,, REB~, etc, 
are much softer than that of their integral-valent counterparts (Jayaraman 1979, King 
et a1 1981, Leger et ai 1985, Penney et a1 1981). In the integral-valent materials, 
B as a function of Q/V (where Q is the charge of the rare-earth ion and V the 
unit-cell volume) is known to follow a linear relationship (Neumann et al 1982). The 
mixed-valent systems fall below this line, indicating that they have a smaller bulk 
modulus (larger compressibility). This feature, as we shall see below, arises from the 
fact that in these materials there is a contibution to the effective bulk modulus from 
valence fluctuations, which is always negative. 

Although we discuss the case of hydrostatic pressure, our semi-phenomenological 
analysis would also apply to the effects of chemical presure, provided local environ- 
ment effects can be ignored. The effective pressure produced by alloying (McWhan 
and Remeika 1970) can be positive or negative depending on whether the substituted 
ion has a size smaller or larger than the host ion. Thus, alloying EuPd,Si, with Au, 
which corresponds to applying negative pressure because the Au ion is larger than 
that of Pd, gives access to a region of first-order phase transitions in the alloy system 
Eu(Pd,-,Au,),Si, (Croft er a1 1982b, Gupta ef a1 1982, Segre et a1 1982). That such 
a first-order phase boundary exists was first proposed by Batlogg et aI (1982), on 
the basis of resistivity and Mossbauer experiments. The ability to generate negative 
pressures makes alloying a very useful tool in the study of phase transitions since 
it provides access to parts of the phase diagram not available to hydrostatic pres- 
sure. Several other interesting results have been obtained in alloy systems. These 
include the observation and characterization of the critical point in Ce,-,Th, alloys 
(Lawrence et a1 1975), the observation of a second critical point in the same system 
(Thompson et a1 1983) and the occurrence of a first-order phase transition in a Yb 
based system Yb,In,-,Cu (Nowik 1986, 1987). 

The small cross section of experimental results we have discussed so far have 
already demonstrated the need for a theoretical description that goes beyond the 
Kondo Volume Collapse (KVC) model of Allen and Martin. In the following sections 
we show that, in order to extend their model to encompass all the phenomena we 
have discussed so far, it is sufficient to replace their Kondo lattice model and volume- 
dependent coupling J by the Anderson lattice Hamiltonian in which both parameters, 
er and A, vary independently with volume. We begin by describing in some detail 
our treatment of the Anderson model for the description of valence fluctuations in 
these systems (section 2). In sections 3 and 4, we go on to discuss the predictions 
of our model, with regard to the nature of phase transitions, assuming various forms 
for the volume dependences of er and A. One of these leads to the Kondo Volume 
Collapse description of Allen and Martin. In section 5 we describe their picture in 
detail and also our own study of the y-a transition in cerium. Finally, we discuss the 
applicability of our model to real systems and comment on the possible consequences 
of including some of the features left out in our model. 
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2. Model 

We take the Helmholtz free energy for the rare-earth system to be 

F = $13, vN(V - + N, q( A ,  T ,  D) . (1) 

The first term is the elastic energy contribution, for which we have chosen a simple 
form that yields a linear pressure-volume relationship. B, is the bulk modulus 
and V, the normal volume; 7 E V/V,. The second term is the magnetic energy 
contribution, where F, is the magnetic energy of a single Anderson impurity and Ni 
the number of such impurities. The single-impurity model describes the scattering 
of conduction electrons from a magnetic impurity (all the f-electron orbitals of the 
impurity are replaced by a single degenerate orbital) and is characterized by the 
position and width of the impurity scattering resonance (er and A) as well as the 
conductionelectron bandwidth D. Since we assume that e, and A are volume- 
dependent, the pressure and effective bulk modulus are given by 

- a F  - 
P ( T , V )  3 -- =B,(1- V ) -  B V  

From simple thermodynamic considerations, a first-order phase transition from 
volume v, to v2, signalled by a bulk-modulus instability, occurs at a transition 
pressure P,(T), which pre-empts this instability. The latter is determined from 

P,(T) = P ( T , V , )  = P ( T , V 2 )  (4) 

and 

G(T,  P,) E F ( T , v , )  + P,(T)V1 = F(T,v , )  + Pt(T)v2. (5) 

These are just the conditions for the pressure and Gibbs free energies of the two 
phases to be equal. The phase boundary, given by P,(T), can be terminated by 
( u p p ~  and/or lower) critical temperatures at which the effective bulk modulus is zero 
and V ,  coincides with 7,. Thus the conditions 

B(T,,V,) = 0 (6) 

and 

determine the critical points T, and v,. 
For an explicit form of the impurity free energy, F,(c, ,A,T, D), we use results 

from a new formulation of large-N slave-boson mean-field theory (Chandran 1987, 
Chandran and Krishna-murthy 1987) in which, unlike the conventional formulation, 
thermodynamic properties can be calculated over a large range of temperatures of 
interest, across and beyond the Kondo temperature. For completeness, we summarize 
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below the salient features of the conventional large-A' slave-boson treatment for the 
Anderson impurity model in the U = 00 limit as well as our modification of it. The 
Hamiltonian is written as (Coleman 1984) 

where bt and b are auxiliary (slave) boson operators introduced in the slave-boson 
technique, to represent the impurity orbital in its empty state. The c and f operators, 
both of which cany a degeneracy index, are fermions representing the conduction 
electrons and the single electron occupying the magnetic impurity orbital respectively. 
The U = co constraint condition (U  being the on-site correlation energy) restrict? 
the charge Q on the impurity orbital to be 1 and is expressed as 

Q E f: f, + btb = 1. 
m 

(9) 

Within the functional-integral treatment (Read and Newns 1983a,b), this constraint 
condition is incorporated as an integral over a Lagrange multiplier field X in the 
partition function (Z+): 

. /B p 
- dX Tr {exp[-pH - ipX(Q - I)]). z+ = L,, 2 a  

The trace is then rewritten as integrals over (imaginary-time) auxiliary boson fields as 
well as Grassman fields corresponding to the fermions. A mean-field (leading order 
in a l / N  expansion) approximation consists of making, first, the static approximation 
for the bose fields, i.e. b * ( r )  = b ( r )  = bo. The action functional and the partition 
function (in the static limit and after integrating out the fermion Gelds) are then 

and 

Here, 

l=(z)=f($+p[/2rr i )  and ( = ? , + i d  (13) 

Zf = ef + X 6 2 a p V 2 b :  E A b :  qo = 1/N. (14) 

with 

Z,, the conduction-electron contribution, is the partition function of a non-interacting 
electron gas. Within conventional mean-field theory, the next step is to write the free 
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energy as the classical saddle-point value of the action. Thus O F ,  = S ( b z , i , T ) ,  
where b; and i are determined from the stationary-point conditions 

aslax = o and aslab, = 0. (15) 

* ( Z ) + l n ( Z n ? ' / D ) + A ~ / A + i n ( ~ - q , + b ~ ) = O  (16) 

These translate into 

$(Z) being the digamma function. The above equation yields a temperature- 
dependent solution, E(T) = :,(?') + iA(T), which describes a Lorentzian scattering 
resonance of width & at position 4. At a temperature T, defined by the condi- 
tion &(T,) = 0, conventional mean-field theory breaks down. F, can no longer 
be approximated as the saddle-point value of the action and calculation of physical 
quantities cannot be extended beyond this temperature. Since this temperature is 
only of the order of the Kondo temperature, defined here as 

(17) T - -2 - 2  112 
K = ( ' % f A )  

most of the temperature range of interest in the problem (up to 1M) times TK), from 
the point of view of valence-change transitions, is excluded from study by this method. 

We have modified the conventional mean-field theory slightly, in order to obtain 
a working prescription for calculating thermodynamic properties over the range of 
temperatures of interest. In our prescription, we retain the static approximation 
but deviate from the saddle-point approximation partially to calculate the partition 
function Z as a weighted integral over all allowed static values of the bose field ba 
(Chandran 1987, Chandran and Krishna-murthy 1987): 

Z = Z ,  L! exp[-S(b;,X,T)].  (18) 

Of the two saddle-point conditions in (15), we have relaxed the latter (aS/ab ,  = 0)  
so that bg is no longer determined by its classical value b:. For every static value of 
b i , i ( b i , T )  is, as before, determined from the first extremum condition in (15), i.e. 
aS /aA  = 0. This ensures that the constraint is imposed on the average, i.e. (using 
nf aq/ac ,  and p ~ ,  = s), 

n f =  $ + ( l / n ) I m ~ ( Z ) = q o - b ~ .  (19) 

The above condition also fixes the upper limit on the range of integration over bg 
to be qo, which corresponds to the minimum value of the valence (nr = 0). Since 
calculation of the partition function itself involves an integral over the amplitude of 
the bose field, physical quantities are now also to be obtained as weighted averages 
over Boltzmann factors corresponding to different static values of b;, analogous to 
the calculation of expectation values. For example, the valence and its derivative with 
respect to ef are given by 
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and 
a2F,/ae; = kBT [(aS/aer)2 + (a'S/ae:) - ( ( a S / a ~ , ) ~ ) ]  . (21) 

At low temperatures, the maximum contribution to 2 as well as physical quantities 
comes from values of b,2 in the neighbourhood of the classical value b,". At T = 0 
itself, only b: conaibutes and the free energy is again pF, = S(b2, i, 2') as in the 
conventional mean-field theory. Thus, our prescription differs from the latter only at 
non-zero temperatures. 

Returning now to the discussion of valencechange transitions, we point out a few 
noteworthy facts. (i) The singlet and the multiplet f configurations of the impurity 
are replaced, in the model, by a single degenerate orbital in which the occupation 
number is restricted to be either 0 or 1 by the constraint condition. Thus valence 1 
in our model corresponds to the P configuration and valence 2+ in Sm systems, to 
the f1 configuration and valence 3+ in Ce systems, and so on. (ii) The temperature 
dependence of the Helmholtz free energy F (cf equation (l)), in our model, comes 
entirely from the impurity contribution c. (iii) Since the elastic contribution to F 
is assumed to be such that it gives a linear pressurevolume relationship, any non- 
linearity in the P-V behaviour would again have to come from F,. Various other 
forms for the elastic energy contribution have been suggested in the literature. We 
have made preliminary studies with one other form (Rose er a2 1984), but find that 
this does not change, qualitatively, any of the conclusions we have presented here 
based on the simple form in (1). 

In the next two sections we describe results obtained from assuming a linear 
volume dependence, separately, for E ,  and A. We first consider the case when er 
varies linearly with volume as 

where e,,, G er(0) = -0 .50  and A is held fixed at A, = 0.080. From analytical 
estimates at zero temperature, we show that the model then describes valence changes 
centred around nr = 2/3, i.e. in the mixed-valent regime. Next we study the case 
when A varies linearly as 

E p ( B )  = E f ( 0 )  + 60(l -V) (22) 

A(T) = A, - aD( 1 - v) (23) 
where A, = 0.080 and E( is held hxed at cm = -0.50. Again from a T = 0 
analysis, it is easy to show that now valence changes are confined to the Kondo 
regime and lead quite naturally to a Kondo Volume Collapse type of interpretation. 
We have also studied two other cases: (i) when both E ,  and A vary simultaneously 
with volume, linearly; and (ii) when er varies non-linearly with volume for fixed A. 

It is worth emphasizing that, even when we assume a linear volume dependence 
for 6, or A, the free energy and its volume derivatives, the pressure and bulk modulus, 
have a highly non-linear dependence on volume through their non-linear dependence 
on these parameters. This non-linearity is in fact responsible for driving a first-order 
valencechange transition. 

3. Mixed-valent regime 

When only 
the normalized (dimensionless) pressure and bulk modulus defined as 

vanes with volume according to (22), A being fixed at A, = 0.080, 

- 
P 3 P\L/NiD (24) 
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B B V N / N i D  
- 

are given by (cf equations (2) and (3)) 
- 
P = B, ( l -V)  + (aF,/a€,)6 

B = ZN + (a*F,/a€;)aZD. 
- 

Since E ,  depends linearly on volume, one can use (22) to replace (1 - 8) by ( .zf - 
cm)/6D in (26) to obtain pressure as a function of E , ,  which is essentially the equation 
of state. We first consider the situation at zero temperature, when the er derivatives 
of the free energy in equations (26) and (27) can be evaluated analytically. The 
impurity free-energy functional at zero temperature, obtained from the T = 0 limit 
of (12), is 

In the Iv 4 a3 limit, the values of bi (at T = 0 this is the classical value bz, 
and henceforth we will denote it only as b;, since the distinction between bz at 
zero temperature and b:, to be integrated over, at finite temperatures will always be 
clear from the context) and i that minimize this functional are determined by the 
zero-temperature limit of the saddle-point conditions 

k = A, In( D/Zr) + O(1 I N z )  (29) 
I r, pi[ = -- . -  
NZ,+A,  

The actual free energy F, is simply evaluated at these values of bi and Z. Then the 
valence n, is given by 

n, ac/ae,  = A,/(;, t A,) (31) 

while 

a’&/&; = -AoCf/(Zf + (32) 

(”b derive these, the implicit dependence of k on E, through the saddle-point condi- 
tion (29) has to be included.) Furthermore, 

Now consider the impurity contribution to the bulk modulus in (27). From (32) it is 
clear that this is always negative and has its lowest value, i.e. is most negative, when 

a3F,/a4 = 0- ~ (34) 
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ie.  when 

4 = A0/2 or E ,  = E A, [$ - 1n(2D/A0)] . (35) 

nf = $ and aZF,/acf = -4/(27A,). (36) 

At this minimum 

This is clearly the mixed-valent regime where nf is changing most rapidly with c? On 
either side of this la2F,/ae:l decreases and tends to zero. For -ef >> A,,, i.e. deep 
in the Kondo regime, 

Fr Y Dexp(e,/A,) s To (37) 

and 

a2F,/acf Y -T , /A; .  

For >> A,, in the strongly mixed-valent regime, 

2, = er + A, In(D/E,) (39) 

and 

a2F/ad 2 (40) 

Thus as the volume varies, and with it er, the bulk modulus 
BN, and attains its minimum value of 

is always less than 

- - 
B,,, = BN - [4/(27A0)]6*D (41) 

6:(o) = (27/4)8N/(D/AO) (42) 

when c, = eft. Clearly, unless 6 is bigger than a critical value 6,(0) given by 

- 
B is always positive and there is never a bulk-modulus insrabilily. But if 6 > SLO), 
there is a range of around qc (and correspondingly a range of v) where B is 
negative. Consequently this bulk-modulus instability will be pre-empted by a first- 
order phase transition with discontinuous volume and valence changes, at a transition 
pressure determined by the conditions (4) and (5). We note that at the critical point 

- 
nfc(o) = 2 and pc(0)  = BN(cfc - cfo)/6,(0) + $6,(0). (43) 

We therefore have an important and interesting result, namely that our model free 
energy contains the ingredients for obtaining continuous (6  < 6,(0)) and discon- 
tinuous (6 > 6,(0)) valence. transitions in the mixed-valent regime centred around 
nf 2 213. We believe that this is just the feature needed to understand the behaviour 
of Eu, Sm and Yb based mixed-valent systems. 

A completely analogous discussion to the one given above can be carried out at 
non-zero temperatures. Now n,(V 3 aF,/ac,) and azF,/&f are given by (20) 
and (21) and the integrals have to be done numerically. At any temperature T, 
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0.7 0.9 1.1 
0 8 7  ' ~ 

6, IT1  

Figure 1. Plot of 6,(T), the critical value of the 
slope of the volume variation 01 e[ ,  with tempera- 
ture for two &ed values of A' (E Ao/D). At a 
b e d  temperature T a firstader transition occurs 
only for 6 > 6,(T). For each A' there is a mini- 
mum value of &(T)  (E (&)min)  such that for 6 
between (&)fin and & ( O )  LhePe is a Brst-order 
phase boundary terminated by two critical points. 

; 

a2F, /ac :  is again negative and has its minimum value at a critical qc(T) ,  which 
must be determined numerically from the condition a36/acf = 0. Then the critical 
6,(T) is determined by 

Once again, if 6 < 6,(T) there is no bulk-modulus instability, but if 6 > 6 J T )  
there is one, giving rise to a discontinuous transition. Our numerical results for 
6,(T) are shown in figure 1 for two different @ut  fixed) values of A,. For each 
A, there is a minimum value of S,(T), which we will denote by (6,),,,, such 
that for 6 < (S,),,, only continuous transitions can occur for the entire range of 
temperatures. For any fixed value of 6 between (a,),,, and S,(O) one clearly has 
upper and lower critical temperatures, T,, and T,,, such that there is a bulk-modulus 
instability only for T,, > T > T,!. Figures 2 and 3 show P versus v and nf 
versus 7 curves respectively for one such fixed value of 6 (A, fixed at 0.080) 
and three values of temperature, two of them close to the upper and lower critical 
temperatures corresponding to this 6, with the third in between. vpical curves for 
the bulk modulus as a function of pressure at a fixed temperature and different values 
of the parameter 6 are plotted in figure 4. Curve B is the critical curve at 6 = 6,(T). 
For values of 6 > 6,(T) as in curve C, the instability appears, accompanied by a 
discontinuous - change in volume and valence, as discussed earlier. The compressibility 
K = 1/B corresponding to curve A in this figure is plotted in figure 5 over a wide 
range of pressure. The behaviour strongly resembles experimental results in EuPd,Si, 
(Batlogg er a/ 1982). Figure 6 shows a plot of (1 - nf)  versus pressure for a fixed 
6 < (S,),,, (corresponding to continuous transitions) at several temperatures. It is 
clear that parts of these curves may be used to model the nf versus pressure data in 
mixed-valent systems. For example, the low-pressure part of the curve at T/T, = 0.5 
could be fitted to YbAl, (Rohler er ai 1982) or Yb metal (Wortmann er a/ 1982), 
while parts of the curves for TIT, = 2 or 4 could be fitted either to SmS in the gold 
phase or to EuPd& (Rohler er ai 1982). The same data are plotted as a function 
of volume (1 - V) in figure 7. The change in behaviour of nl with (1 - 7) for 
different parametric values of TIT, is similar to the behaviour of the isomer shift 
with temperature for different pressures in EuPd,Si, (Schmiester er al 1982). 
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020 
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0.92 0.86 0.80 0.71 0.68 0.61 

Pierrura I P I  - 
Figure 3. Valence Venus pressure for the same 
fixed 6 and lhe same values of temperature a s  in 
figure 2 

Volum.,G 

Figure 2, l @ k l  p versus Y c u m  for a fixed 6 
(belween (&),,,in and S , ( O ) )  and three values of 
temperature, WO of which are close to the upper 
and lower critical points appropriate for this 6. 

0.6 

0.3 

0.2 
1.3 1.5 1.7 1.5 1.Z 1 6  1.6 1.8 2 0 

Plorrvro (;> P,.ra"m& 

Figure 4. l@ical culves for lhe bulk modulus 
as a function of pressure al  a ked temperature 
(TlA, = 0.1) for various 6. For 6 > (6c)mk 
(curve C) there is a bulk-modulus instabilily, B 
becoming negative over a range of pressures that 
is the lint-order phase boundary. Cuwe B is the 
critical cuwe. 

Figwe 5. The compressibility i? a 118 a r e -  
sponding I? curve A in figure 4 is plotted over a 
wider range of pressure. The behaviour Ken here 
resembles the experimental resulls in EuPdiSiz 
(Batlogg el a1 1982). 

It is reasonable to expect that the largest continuous variation in valence with 
temperature would occur for values of 6 close to (6Jmin. That this is indeed true 
can be seen from figure 8 where nf versus temperature is plotted for two values Of 6 
less than (6c)min, with 6, < 6, < (6Jmin. The variation in nf with T is larger and 
more rapid for 6, than for 6,. This is again similar to the behaviour of the isomer 
shift with temperature in EuPd,Si, (Schmiester ef al 1982) for different external 
pressures. Here 6 plays the role of pressure. In our model 6 is a phenomenological 
parameter, to be fixed for every system by comparison with experiment. We have also 
set it to be independent of pressure, but in general it is more likely that 6 itself would 
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Fsum 6. Plot of (1 - n,) vcmw presurc for 
a Wed 6 < (only mntinuous transitions) 
and several temperatures. 11 is clear that pans of 
these curves may be used lo model the nr versus 
pressure data in mixedvalent systems (see rext). 

0.9 

t i 4 1  % 
Figure 7. The same &U for the valence in figLe 
6 is plotled here as a function of volume (1 - V). 
Notice that Ihe behaviour of nr with (1 - 7) for 
diEerent parameter values of T/To is similar to 
the behaviour of the isomer shift with temperature 
for different pressures in EuPdlSiZ (Schmiester CI 
nl 1982). 

be pressure-dependent. Since the lattice stiffens with increasing pressure, its response 
to a further increase in pressure reduces. Then it would be reasonable to expect 
that 6, the rate of change of er with volume/preuure, would decrease as the pressure 
increases. Equivalently, this effect amounts to a non-linear volume dependence for 
the hybridization width cf.  Since we have separately studied a non-linear volume 
variation of er for which we describe our results at the end of the next section, here 
we keep 6 independent of pressure. In spite of this, as emphasized earlier, the free 
energy depends non-linearly on volume through its non-linear dependence on these 
parameters. 

Figure 8. Valence versus temperature for two val- 
ues of 6 close to such that 61 < 62 < 
(6c)mjn. The overall variation in ny With T is 
larger for 62 than for 61. illustrating the fact ,that 
the largest continuous vafiation of valence w u r s  
for 6 closest to 

1 
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4. Kondo regime 

So far we have discussed the properties of our model free energy when A is held 
fixed and ei varies linearly with volume. We now consider the circumstance when cf 
is held k e d  at ef(0)  = cm = - 0 S D  while A varies linearly with volume around 
A, = 0 . 0 8 0  as in (23). Then one has results analogous to the earlier results with 
A -+ (-cy) and 6 - a. In particular (compare equations (26) and (U)), the pressure 
and the bulk modulus are now 

(45) 

(46) 

- 
P = B*(A, - A ) / ~ D  - (a</aa)a 
B = BN t (aZF,/aA2)a2D. 
- 

At finite temperatures, the derivatives of F, with respect to  A can again be expressed 
as averages over bg (compare equations (20) and (21)): 

aF,/aA = k,T(aS/aA) (47) 

d2F,/aA2 = k,T [(aS/aA)’ + (a2S/dA2) - ((aS/aA)’)] (48) 

while at zero temperature analytical estimates can be made, in analogy with equations 
(31) and (32): 

In contrast to a2F;/8ez at T = 0 (equation (32)), which is always negative, 
a2F,/aAz is negative only deep in the Kondo regime when -efo > A,,. In that 
regime 

ifo r To Dexp(e,/A,) = Dexp(-1/J) (51) 

where J = -Ao/eio is the dimensionless Kondo coupling constant and To the Kondo 
temperature. Then 

a2F/8A2rr -T,(l - 2 J ) / e & J 4  (52) 

which is indeed negative when J < 112. On the other hand, in the limit where 
em > A, one has 

5 efO t Aoln(D/cfo) (53) 

a2F/dA2 Y (2/em)In(D/em).  (54) 

whence 

Thus when A alone varies linearly with volume, our model free energy can develop a 
bulk-moduIus instability only deep in the Kondo regime, where one can equally well 
talk about a linear variation of J in the form 

J( V )  = J ,  + a‘( 1 - V) (55) 



7080 L Chandran el a1 

0 01 

om 

0 
058 0.66 0.7. 0.82 0.90 

Cdcn1- 

Figure 9. Plot of a,(T), the critical value or the 
slope for the volume varialion of A, as a funclion 
or temperature. For 01 < o,(T) only continuous 
transitions occur, but for 01 > rrc(T) there is a 
firsl-order phase boundaly. 

Figure 10. Valence versus lemperature lor the same 
fixed volume as in figure 8 but wilh A as the 
volumedependent parameter in place of q. Notice 
that in this cise the change in nt is much smaller 
while the values of R, are restricted to lie in the 
integralvalenl regime. 

where J0 = J ( 0 )  = - A O / E r o  and ai = &DIEm. This is exactly the Allen and 
Martin picture of the y-a transition in cerium, which we will discuss in detail in the 
following section. In terms of J 

a F / 8 J  = - -Er08F/aA-  - T 0 / J 2  (56) 

a 2 F / a J 2  = & a Z F / a A z c z  -To(l - 2 J ) / J 4 .  (57) 

As is easily verified, a 2 F / a J Z  has a minimum when J = J ,  = 0.2113 at which it 
has a value equal to -2.550. Clearly if a' > a:(O) where 

then there is a bulk-modulus instability and an attendant first-order phase transition 
with a discontinuous volume change: the Kondo Volume Collapse (KVC) transition 
of Allen and Martin. 

As before at finite temperatures, we can use numerical results for ( a F / a A )  and 
( a 2 F / a A 2 ) ,  as computed from (47) and (e), to calculate a critical a:(T) given by 

Thus at any temperature T ,  the KVC transition is possible only if a' > a:(T).  
Figure 9 shows the numerical results we have obtained for a,( T). Note the qualitative 
similarity between the a,(T) and the 6JT)  curves in figure 1. For any fixed there 
exists an (a&,,in such that for a < ( o ~ ) , ~ "  only continuous transitions occur. For 
(a.Jmin < a < a c ( 0 ) ,  there are upper and lower critical temperatures such that for 
T,, > T > T', one has the first-order KVC transition as the volume/pressure changes. 
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Since the above considerations are applicable only in the Kondo regime, the 
corresponding valence changes are very small. This is illustrated in figure 10 where 
the valence is plotted as a function of temperature for the same fixed volume as in 
figure 8 and two values of a less than but close to (aJmin. In contrast to figure 8, 
where the overall valence changes are large and span all of the mixed-valent regime, 
the changes here are much smaller and cover only the integral-valent regime. Note 
also the trend that smaller values of a, i.e. further away from correspond to 
smaller overall changes. Thus, the only difference between the two separate volume 
variations is the fact that one of them describes small valence changes in the Kondo 
(integral-valent) regime while the other covers large valence changes in the mixed- 
valent regime. Both are capable of describing continuous as well as discontinuous 
transitions. 

Next we consider the situation when cr and A are both varying linearly with 
volume according to (U) and (23). This simultaneous volume dependence will obvi- 
ously be present in many mixed-valent systems and we expect that the behaviour in 
such cases will interpolate between the two extreme limits we have just discussed. In 
particular, for any fixed temperature, instead of a critical a,(?') or 6,(T), there will 
now be a critical line in the 6-01 plane on one side of which there is a bulk-modulus 
instability. This critical line is shown in figure 11 at zero temperature. The corre- 
sponding critical values of the valence, volume and pressure vary smoothly along this 
a", the valence varying from U3 for 6 # 0, a = 0 to a value close to 1 at 6 = 0, 
a # 0. The shaded region in the figure represents the range of values of 6 and a 
for which discontinuous transitions can occur at T = 0. 

Fkally it is interesting to examine the results from a non-linear volume depen- 
dence of the Anderson model parameters. In particular, consider a volume depen- 
dence of of the form 

with A held lixed at A, = 0.080 and both q(V) and c,(O) taking negative values. 
While experiments suggest values of n between -4 and -10 (Schilling 1979), we 
have studied a smaller value of n = -2 in order to be able to observe trends with 
increasing non-linearity. Since q(0)  is negative, n = -2  implies that q ( V )  increases 
with pressure, becoming less negative (closer to the Fermi level). Now there is an 
erc(T) (analogous to 6JT)  and aC(T)) ,  which is the critical value of ~ ~ ( 0 )  (for fixed 
n) at temperature T, beyond which a first-order transition occurs. The results for 
E&') are shown in figure 12. It is interesting to compare the behaviour of valence 
as a function of pressure or volume for the linear and non-linear volume variation of 
er. For close to 1, the latter can be approximated as 

Ef(V) = E f ( 0 ) [ l  - n(1 -V)] 

which corresponds to a linear variation of the form (22) with 6 = - n ( q / D ) .  We 
have used this value of 6 in the linear variation (for all 7) for making the comparison. 
Figures 13 and 14 show plots of valence versus pressure at four different temperatures 
in the two cases. The initial response to pressure (B in the range 1 to 1.6) is more 
sensitive in the non-linear case at all temperatures, the valence changing rapidly with 
pressure. At low temperatures the change in nf is larger and saturates at a lower 
pressure in the non-linear case, but this trend is reversed at higher temperatures. The 
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Figure 11. In the case of a combined variation of 61 

and A with volume, a1 any particular lemperature 
there now exists a critical line in the 6-0 plane. 
The shaded region reprerenu the range of values 
of 6 and o mer which a dismntinuous transition 
can occur at T = 0. 
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14,m 
Figlln 12. Plot of trc(T), lhe critical value of 
rr(0) at temperature T ,  for a non-linear wlume 
variation of e,, beyond which a first-order lransition 
OCCUIS. 

reversal of trends is better illustrated in figure 15 where the triangles correspond to the 
non-linear and circles to the linear volume dependence of E?.  While at T = 0.5T0 
(open symbols) the non-linear behaviour shows a faster variation accompanied by 
large changes in nf, at T = 4T0 (full symbols) it is the linear dependence that gives 
a larger variation. The overall change in valence with temperature is larger in the 
case of the linear variation of cy, spanning the entire range of nf values (the change 
is only about 70% in the non-linear case). Too much emphasis cannot be placed on 
trends seen in this study. The differences seen here could also be due to the fact 
that cm is further away from than 6 is to (6,),;! ,(cf discussion of figures 8 
and lo), in spite of the fact that we have chosen the initial slopes (for v close to 
1) of the volume variation to be the same. We expect these differences to become 
more prominent with increasing non-linearity, but all the trends can be conclusively 
pinned down only after several other values of n, both positive and negative, have 
been studied. 

The parameters in our model, i.e. el, A and the slopes of the volume variations of 
these, characteristic of any particular system, can only be chosen by comparison with 
experiments. As a detailed application to a specific system, we now go back to the 
7-0 transition in cerium. In the following section we describe first the Martin and 
Allen (1985) work and then our own study of it. Although the calculations in both 
cases are crude compared to what we have described in the previous sections, they 
are useful, not only for highlighting the differences between the KVC model and ours 
but, more importantly, for pointing out the difficulties with fitting of experimental 
results in real systems. 

5. The 7-U transition in cerium 

5.1. The Kondo Volume Collapse model of Martin and Allen 
The first-order, isosuuctural, y-a transition in cerium (Lawson and Tang 1949), 
unique among elemental solids, has always attracted a lot of attention. Theoretical 
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Figure 13. Valence versus pressure at four different 
temperalures when er varies linearly with_olume 
aceording to f r ( 7 )  = si(0) + SD(1 - V); with 
6 = 1 and ~ f ( 0 )  = -0.5D; A is held fixed at 
A0 = 0.080. 

Figum 14. Valence versus presure  at different tem- 
peratures when f f  vanes non-linearly with volume, 
i.e. q(V) = q ( o ) / V  with q(0) = -0.50. I 

Pr*srurl i PI  

F@re 15. Detailed comparison of the linear (circles) and non-linear (triangles) VOlUme 
variations of e! a1 low (T < TO) as  well as high temperalum. The initial response to 
pressure (p between 1 and 1.6) is morc sensitive for the non-linear volume variation at 
all temperatures In the linear case the cmerall change is smaller at low temperatures 
and larger at high temperatures. 

efforts to understand this transition include the band-based models of Glotzel (1978) 
and Rainford and Edwards (1987) as well as the Kondo Volume Collapse model of 
Allen and Martin (1982), Martin and Allen (1983, 1985) and Lavagna et a1 (1982, 
1983). Here we describe the work of Martin and Allen (1985) since this later work 
includes the effect of the orbital degeneracy of cerium. 

Their model is based on two sets of experimental observations: (i) Contrary to 
the general correlation of reduced atomic volume with reduced f occupancy, several 
experimental techniques including hII (Wohlleben and Rohler 1984) indicate that 
the y and a phases are both integral-valent. Hence they can be described by the 
Kondo regime of the Anderson model or, equivalently, the CoqblinSchrieffer (a) 
model, which is the generalization to the case of large orbital degeneracy of the 
Kondo model. (ii) The Kondo coupling energy J varies rapidly with volume in 
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most cerium systems (Schilling 1979). Schilling has estimated that J ( V )  is such that 
d(ln J ) /d( ln  V )  lies in the range -4 to -10, which presumably implies a highly non- 
linear volume dependence. The 15% volume change can  thus cause large differences 
between the values of J in the two phases. 'lb model this Allen and Martin (1982) 
use J = 0.16/V , which for close to 1, as in the case of the y - a  transition, can 
be approximated by J = 0.16f 0.96(1 -7). For the large-N calculation (Martin 
and Allen 1985)theyuse J=0.15+(1-v) .  

The driving mechanism for the transition in the Kondo Volume Collapse model 
is the drastic volume dependence of the Kondo singlet stabilization energy (-kB-T0) 
arising from the strong volume dependence of J (taken to be dimensionless). To is 
the Kondo temperature defined as 

4 

T 0 -  = De-'/J(eJ)'IN E To(eJ)'/N. (62) 

The idea that Kondo energies drive the transition is also supported by two other facts: 
(i) the entropy change due to the multiplet-singlet transition, kBln(6), has a value 
1.8kB, which is very close to the experimentally observed value of 1.54kB; (ii) the 
critical temperature T, is of the order Po. Also the estimates of Po, = 4.7 meV and 
Po, = 66 meV by Allen and Martin (1982) agree with those obtained from neutron 
scattering (Shapiro ef a1 1977) and correctly account for the change in the energy of 
N 60 meV observed a t  the transition (Koskenmaki and Gschneidner 1978). 

Martin and Allen write for their equation of state 

Here, as in (I), the first term is the elastic energy contribution, while the second 
and third terms come from the impurity free-energy contribution. Values of the 
normalized volume and bulk modulus V, and E ,  are chosen by them to be the 
average'of the values for La and Pr (Scott 1978). For the ground-state energy E, 
they use the result from systematic perturbation theoly in 1/N (Rasul and Hewson 
1983), the volume dependence of E, coming in through J. For the actual calculations 
they use To (the N 4 00 limit for the Kondo temperature) rather than To and set 
the ground-state energy to be 

E, = To E De- ' lJ .  (64) 

For the temperature-dependent part, i.e. the third term in (63), they retain the full 
finite-N form Po for the Kondo temperature, which comes in through the specific 
heat, and choose for the latter the result from the Bethe ansalz for the CS model 
(Rajan 1983). Starting from the equation of state (63) they study the y-a phase 
transition by the standard equal-area construction (cf equations (4) and (5)) and 
obtain a phase boundary that is in qualitative agreement with experiment as shown 
in figure 16. 

5.2. Furfher sludy of fke 7-0 tramilion and comparison with erperimenls 

In our study of the details of the 7-a transition we continue to use the Anderson 
model, in order to be able to pinpoint the difference between the KVC description 
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Plgure 16. A ponion of the phase diagram of Ce meal (King .?I ol 1970) showing lhe 
7-a phase boundary lerminaling in a critical p int .  The broken curve is the phase 
boundary calculated ty Martin and Allen (1985) fmm their Kondo Volume Collapse 
model. 

and ours. We incorporate the volume dependence through A, in accordance with 
the visualization of Martin and Allen, and also of Lavagna et ai, that the y-a 
transition is due to an increase in A,  or equivalently of J (E -A/lefl) with pressure. 
Ekperimental support of this idea comes from the neutron scattering results of Shapiro 
et a1 (1977), Rainford er a1 (1977) and Stasis ef a1 (1979) and from the photoemission 
results of Croft er a1 (1981). The Kondo temperature of the high-pressure a phase is 
then very large since it depends exponentially on volume changes. Lavagna el a1 (1982, 
1983) estimate To to be loo0 K for Ce and 50C€Q K for &AI,. Hence one should be 
able to treat this phase by a zero-temperature theory plus Fermi-liquid corrections to 
the free energy. On the other hand the y phase has a small Kondo temperature (To 
approximately 100 K) and may crudely be described by a high-temperature theory. 
At the simplest level, the phase boundaly and critical point can be understocd from 
the separate Helmholtz free energies of the two phases 

F , ( T , v e )  = iBNVN(ve - 1)’ + Ni[A, In(er/D) - Foe - $yoT2]  

FT(T,TT)  = $BNVN(v7 - I)’ + N,[A,, l n ( q / D )  - kBTln6].  

(65) 

(66) 
The Aln (e f /D)  term is the extra contribution to the Kondo ground-state energy in 
the Anderson model, coming from virtual fluctuations into the singlet state (Krishna- 
murthy et a1 1980); yo is the coefficient of the specific heat at zero temperature, 
which has the Fermirliquid value 

and pa, the Kondo temperature of the a phase is as defined in (62) but with a value 
of J appropriate to this phase. In our calculations too we have used the N -t 00 

form for the Kondo temperatures, i.e. To, and TOT, defined as in (64) but with the 
appropriate values of J in the two phases. The free-energy expressions (65) and (66) 
should provide reasonable descriptions of the a and y phases for temperatures such 
that Tay < T << To,. The first-order phase boundary is obtained from demanding 
that the pressure and Gibbs free energies of the two phases are equal (cf equations (4) 
and (5)). At any pressure P on this phase boundary, the volumes of the two phases 
are determined by the following conditions (from (5)  and using (65) and (66)): 
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As mentioned earlier, we have assumed that the volume dependence of J and hence 
of To, is due to a volume dependence of A. We take this to be of the form (slightly 
different from (23)) 

A(T) = A, - a( 1 - V)q 

J(V) = J ,+a( l  -U, (71) 

(70) 

which corresponds to a variation of J of the form 

in agreement with that of Martin and Allen (provided also that Je= 0.15 and 
a = 1). Using (68) to (71) it is easy to see that v,( P, 7') and V, (P) can be 
determined from 

(72) 

and these in turn are used in equations (4) and (5) to determine the phase boundary. 
Our results are shown as the full curve in figure 17. The broken curves are the Kondo 
temperatures of the two phases corresponuing to the volumes determined from (72). 

Needless to say, the approximations are consistent only in the middle of the phase 
diagram where To, > T > To-,. They would be useless for understanding the critical 
points of the phase diagram, where the volumes and the Kondo temperatures of the 
y and a phases become equal. This latter requirement implies that To, and TOT 
should behave as shown schematically in figure 18. Comparing with figure 17 one 
can conclude that the approximation (66) for the y-phase free energy in terms of the 
high-temperature limit may be acceptable but the approximation (65) for the a-phase 
free energy is obviously not very good. What is left out of (65) is the bootstrapping 
effect of increased temperatures, which bends the To, versus pressure curve from 
that in figure 17 to the one in figure 18. As the pressure and temperature increase 
along the phase diagram (figure 16), temperature-dependent terms in F, must ensure 
that Vu does not increase as much as expected on the basis of (72). Correspondingly 
To, would increase much less than in figure 17, making temperature effects more 
important, and so on. 

In spite of the fact that this very important (for critical points) bootstrapping 
effect is missing in these crude calculations, we have found them to be useful in 
getting a zeroth-level qualitative understanding of many of the features of the KVC 
transition. Hence we have used them to study the following questions of interest with 
regard to choice of parameters for comparison with experiment. 

(i) The importance (or lack thereof) of the A l n ( q / D )  term in the free energy, 
since this term arises only in the Anderson model and is absent in the Kondo model. 

(ii) The effect of a change in the elastic energy parameters, namely the bulk 
modulus and the reference volume, since this would change the balance between 
elastic and magnetic energy contributions. 
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F@re 17. Phase boundary for the y-a transition in Ce using approximate forms for the 
separate Cree energies or the two ph-. Alm shown in the figure are the corresponding 
Kondo temperatures of the hvo phases. 
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Figure 18. Schematic depiclion of lhe modification to the behaviour of To, and To, 
(figure 17) required to understand the erilical points in the phase diagram. 

(iii) The difference between the results obtained using the le?ding order ( N  -t CO) 

expression for To and those obtained using the full expression To because the Kondo 
tempeI'aNre is a very sensitive function of volume. This question is of interest also 
for the understanding of the large-N expansion. 

(iv) The role of particular forms of the volume dependence of the coupling 
constant and the consequence of changing either the slope a or the reference value 
Jo in the form of J (  V )  in (71). 

As expected we find that while none of these are key features in obtaining a quali- 
tative understanding of the valence-change transitions, comparisons with experimental 
phase diagrams become very difficult in view of the sensitive quantitative dependence 
of the results on these parameters. We discuss this in detail below. 

Curve A in figure 19 is our equivalent of the Martin and Allen phase boundary 
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and serves as the reference curve. This has been obtained without including the 
Aln(ef /D) term in (a), specific to the Anderson model, along with their choice 
of parameters, i.e. B ,  = 280 kbar, V, = 36 A3, J,, = 0.15, LY = 1 and To rather 
than Fo as the expression for the U n d o  temperature. Curve B shows the effect of 
including the A ln(cr/D) term in the free energy. This term shply shifts the phase 
boundary towards negative pressures. 

Flgure 19. The 7-0 phase boundaly for 
different paramelcr values. The mulls 
illustlilte the difficulty in making com. 
parivlns with experiment. 

The values of B, and V, used by Martin and Allen are somewhat higher than 
those widely quoted in recent literature (Benedict ef al 1986, Lavagna ef a1 1983). 
Curve C in figure 19 shows the effect of using B, = 239 kbar and V, = 34.37 A3 
(Rose et ai 1984). This changes the slope of the phase boundary and moves it towards 
lower pressures. 

Since To depends sensitively on volume, a small change in To could make a large 
difference in the phase diagram. This is borne out by the difference in our results 
from using the finite-N form of the Kondo temperature Po (curve D). Crudely, a 
larger Kondo temperature, as in this case, seems to imply that a greater amount 
of pressure is needed to drive the transition at some fixed temperature. This result 
is to be expected in view of our picture of the transition as being one from the 
non-magnetic to the magnetic state of the impurity. Curve E is the result of the 
combined effects of the AIn(rr/D) term in the f ree  energy and the choice of the 
finite-N form for the Kondo temperature, and illustrates the difficulty involved in 
fitting experimental results. Several combinations of the effects mentioned above can 
give equally good fits to a particular experimental phase boundary. 

In order to study the effects on the phase diagram of changes in the volume 
dependence of J (  V), i.e. in the values of J,, and a, it turns out to be important to 
get the phase boundary correctly, Le. including critical points. For this purpose, as 
discussed earlier, one must use an impurity free energy that has a realistic temperature 
dependence (has the necessary bootstrapping effect): one that includes the Kondo- 
quenched, Fermi-liquid state at low temperatures and the destruction of the coherence 
of this state, leading to a free-moment behaviour at higher temperatures. 

One way of doing the above is to use a full temperature-dependent free energy as 
described in sections 3 and 4. The other is to do as Martin and Allen have done, i.e. 
to Write the free energy as the sum of the ground-state energy plus a temperature- 
dependent correction, which interpolates between low and high temperatures. For 
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the latter one can use the Bethe ansa& results for the Cs model due to Rajan (1983), 
who has expressed his results for the specific heat in terms of an effective density of 
states g(e)  (to be obtained numerically) 

(6/2kBT)' 
C , (T)  = ( N  - l ) k B 2  de  d e )  1 cosh2(e /2kBT)  (73) 

m 

q ( T )  = - Ic ,T(N - 1 )  deg(e) ln[ l  + e x p ( - e / k B T ) ] .  (74) 

Rather than using Rajan's numerical results for g(c),  we fitted the following analytical 
form for the scattering resonance: 

The parameters A, a and b can be determined from the conditions that the free 
energy at low and high temperatures have the correct behaviour, i.e. 

F,(T - 0 )  = E ,  = To 

F,(T - 03) = - k B T l n ( N )  

(76) 

(77) 

and that the finitetemperature correction to the free energy at low temperatures 
leads to the Fermi-liquid expression for the specific heat coefficient (cf equation 
(67)). These conditions lix the coefficient A in (75) to be 

while U and b are solutions of the equations 

N r ( 1  + 1 / N )  sin(2.z) a2 = 
N - 1  R - L  

where L = tan-'(b2/a2) .  The resulting density of states is compared with that of 
the Bethe ansa& for N = 6 in figure ZO. Although the fit is not very good, it has the 
advantage of being easier to handle numerically. 

Curve A in figure 21 shows the phase diagram obtained from the impurity free en- 
ergy in (74) and using the above model density of states. It includes the A In(c,/D) 
term, with the other parameters corresponding to the Allen and Martin choice. Thus 
it corresponds to curve B of figure 19. As in the earlier calculation, the Aln(q /D)  
term is seen to shift the phase boundary to negative pressures. Furthermore, the fact 
that this phase boundary is terminated by critical points shows that our model density 
of states and corresponding free energy contain the bootstrapping effect responsible 
for producing the critical point. 

Now consider the effect on this phase boundary of changes in the volume depen- 
dence of J ( V ) .  A change in the reference value Jo has a similar effect as that of 
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Figure 20. An approximate form for the density 
of states or the single-impurity scattering resonance 
(full curve) compared with lhe exact results from 
the Belhe omm (broken cume) for N = 6. 
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Figure 21. The 7-01 phase boundary oblained by 
using the appmximale form for the density of states 
in figure 20. The etTec1 of varialions in the param- 
eter valus describing the volume dependence of J 
is illus(rated here (see lext for details). 

the A In( er/ D) term, in that it shifts the phase boundary towards lower pressures 
(curve B in figure 21). On the other hand a change in the slope 01 expands the phase 
boundary, making discontinuous transitions possible over wider rangcs of pressure 
and temperature. The change in oi also shifts the phase boundary towards higher 
temperatures. This trend has already been demonstrated in sections 3 and 4 (figure 9) 
as well as in the simpler calculation presented earlier in this section (figure 19). The 
effect of changes in oi is brought out in more detail in figure 22 Here we plot the 
upper and lower critical temperatures as a function of 01. Actually these are the two 
branches of one smooth curve a,(T), which was obtained in the full calculations de- 
scribed in section 4. The fact that the same qualitative trends are seen in the simpler 
calculations described in this section as in sections 3 and 4 implies that two important 
conclusions can be drawn. The competing effects of different contributions to the 
free energy resulting in ambiguities with regard to fitting experimental results seen 
here is also true of the results in section 3 and 4. More importantly, it demonstrates 
that the only crucial features necessary to describe the first-order phase boundary 
and critical point are the non-linear volume dependence of the free energy and the 
bootstrapping effect of high temperatures. 

Our results make clear that, at the quantitative level, the phase diagram of the 
KVC model is affected substantially by the variety of factors that we have considered. 
As discussed in detail in the following section, this is probably the reason why sev- 
eral other explanations in the literature, for phase diagrams, different from the one 
discussed here and of varying levels of sophistication, have met with just as much 
success. In particular, this is probably the reason for the discrepancy between the 
theory of Lavagna el of (1983) for &AI, and experimental results. They predict a 
first-order transition at all temperatures but in reality the transition is almost always 
continuous (Vedel et al 1986, Penney et a1 1981). Clearly the choice of parameters 
necessary to fit a theoretical phase diagram to experimental data is not unambiguous 
and can be done believably only when some of these parameters can be futed else- 
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F&um 21. Plot of the upper and lower critical 
temperatures T,. and TCI as a function of  e, rhe 
slope of the volume variation of .I. These are two 
branches of the full cuwe ac(T) shown in figure 9. 

where, namely by good theoretical calculations for the results of other experiments 
in the same systems. 

6. Discussion and summary 

Our calculations have left out several effects clearly present in mixed-valent systems. 
?ivo of the important ones are Coulomb corrections and effects due to strong coupling 
to the lattice. The large volume difference between the two valence configurations 
and the highly localized nature of the 4f states of the impurity lead to strong screen- 
ing and on-site correlation effects and also to strong coupling to the lattice. Part 
of these effects, those which can be taken into account by a renormalization of the 
Anderson model parameters, is included, since in our calculation these parameters 
are phenomenological (Razafimandimby er ai 1984). It is actually rather difficult to 
separate the contributions of these two effects. Neither can be expected to make 
any qualitative difference but they would further complicate quantitative fits to ex- 
periments. Mannheimer and Parks (197!9), based on their study of cerium systems, 
have conjectured that the bootstrapping effect responsible for the valence transition 
in these systems is lattice-mediated rather than through Coulomb forces. 

Coulomb forces are known to play an important role in metal-insulator tran- 
sitions. In many alloy systems, e.g. SmS,Se,-,, valence transitions, continuous as 
well as discontinuous, are accompanied by a change from metallic to non-metallic 
behaviour (Wohlleben 1976). They are important because the 4f levels are highly 
localized, having large correlation energies, and hence significant screening effects 
can be present when the valence changes. One way to account for this effect is to 
include a 'Falicov-Kimball' term in the Hamiltonian (Falicov and Kimball 1969). In 
a mean-field approximation, this means we should include a term Xn,(l - nf) in 
the free energy (for X < 0 this term is attractive and favours valence changes) and 
do a self-consistent calculation for the f-level position. Bowen and Lady (1984) have 
made a Green function treatment of this Hamiltonian and conclude that Coulomb 
correlations by themselves are not key ingredients to understanding valence-change 
transitions. 
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The effect of coupling to the lattice in the form of local polarons has been studied 
in detail by Hewson and Newns (1979,1980), who conclude that the dominant effect 
of this coupling, in the range of frequencies relevant to mixed-valent systems, would 
be to renormalize and reduce inter-site hopping rather than to reduce A as claimed 
earlier by Sherrrington and Von Molnar (1975). Their result can thus be used as 
another argument supporting the treatment of mixed-valent systems as collections of 
non-interacting impurities. From their work one expects that local polaron effects, if 
any, are negligible. 

In summary, we have presented a semi-phenomenological model for phase transi- 
tions in mixed-valent systems that is a generalization of the Kondo Volume Collapse 
model of Allen and Martin. It is based on competition effects between magnetic 
and elastic energy contributions to the free energy and is capable of providing a 
unified description of very diverse, responses to pressure seen experimentally in these 
systems. We have studied the role of different contributions to the free energy and 
their dependences on parameter values. We have found that the only crucial feature 
necessary to describe valence-change transitions is that the free energy depends non- 
linearly on volume. The precise source of the non-linearity seems to be irrelevant so 
that comparisons with experiment are necessarily ambiguous. 
This fact explains the apparent success of several other approaches to the cqua- 

tion of state in mixed-valent systems, which keep only one or the other source 
of non-linearity. h r m a  and Heine (1975) in their calculation of the equation of 
state of samarium chalcogenides explicitly keep non-linear effects through coupling 
to phonons, but neglect completely effects due to the hybridization width. They ob- 
tain fits to within 20% of experimental results. Non-linear effects coming from the 
lartice have also been included by Jayaraman et al (1974) using an empirical relation 
connecting hulk moduli at different volumes. We have made preliminary calculations 
in which we replace the linear term in the pressurevolume relationship with the 
non-linear scaling form of Rose er ai (1984). We have found that, when both elas- 
tic and magnetic contributions are non-linear and are present together, then for the 
same set of parameters and extemal conditions like temperature, pressure, etc, the 
valence transition show a tendency to become less discontinuous. This result needs 
to be explored further. Our treatment is restricted to only those systems in which one 
of the two configurations involved in valence fluctuations is magnetic, and therefore 
does not cover Tm based systems. 
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